首页> 外文OA文献 >A master solution of the quantum Yang-Baxter equation and classical discrete integrable equations
【2h】

A master solution of the quantum Yang-Baxter equation and classical discrete integrable equations

机译:量子Yang-Baxter方程和经典方程的主解   离散可积方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We obtain a new solution of the star-triangle relation with positiveBoltzmann weights which contains as special cases all continuous and discretespin solutions of this relation, that were previously known. This new mastersolution defines an exactly solvable 2D lattice model of statistical mechanics,which involves continuous spin variables, living on a circle, and contains twotemperature-like parameters. If one of the these parameters approaches a rootof unity (corresponds to zero temperature), the spin variables freezes intodiscrete positions, equidistantly spaced on the circle. An absolute orientationof these positions on the circle slowly changes between lattice sites byoverall rotations. Allowed configurations of these rotations are described byclassical discrete integrable equations, closely related to the famous$Q_4$-equations by Adler Bobenko and Suris. Fluctuations between degenerateground states in the vicinity of zero temperature are described by a rathergeneral integrable lattice model with discrete spin variables. In some simplespecial cases the latter reduces to the Kashiwara-Miwa and chiral Potts models.
机译:我们获得了具有正玻尔兹曼权重的星形-三角形关系的新解,其中包含作为特殊情况的该关系的所有连续和离散自旋解,这是以前已知的。这个新的主解决方案定义了统计力学的一个完全可解的2D晶格模型,该模型涉及连续的自旋变量,它们生活在一个圆上,并且包含两个类似温度的参数。如果这些参数之一接近单位根(对应于零温度),则自旋变量将冻结到离散位置,在圆上等距间隔。圆上这些位置的绝对方向通过整体旋转在晶格位置之间缓慢变化。这些旋转的允许配置由经典的离散可积方程描述,该方程与Adler Bobenko和Suris著名的$ Q_4 $方程密切相关。零温度附近简并基态之间的涨落由具有离散自旋变量的一般可积晶格模型描述。在某些简单的特殊情况下,后者简化为Kashiwara-Miwa和手性Potts模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号